Geometry B Live Lesson Class

U7L2 – Chords and Arcs (Ch. 12-2 in textbook)

Agenda

1. Review topics and problems from Unit 7, Lesson 2 – Chords and Arcs.

2. Use the 2-column note system to take better notes in math class. Bring your math notebook and pen or pencil to each math LiveLesson class.

2-Column Notes Template

- 1. Announcements/To Do's
- 2. School-Wide Learner Outcomes
- 3. LL Objectives
- 4. Vocabulary words
- 5. Problems
- 6. Summary (End of class)

- 1. Write down important details.
- 2. What are you going to work on this week?

- 4. Definitions (fill in as we go)
- 5. Steps to solving problems
- 6. 1 or 2 sentences about the LL class.

Reminders and To – Do's

Information

1. Complete 1 math lesson per day.

- 2. Check your WebMail every day
- 3. Be prepared to spend 4 6 hours per day on schoolwork.
- 4. Remind your Learning Coach to take daily attendance

What to do

- 1. Go to your Planner in Connexus to find the math lesson for the day
- 2. Go to Connexus to find WebMail
- 3. Complete lessons for the day from your Planner. Do not get behind on lessons.
- 4. Have your Learning Coach log into Connexus daily.

Reminders and To – Do's

Information

- 5. Go to the Message Board first for information about our math class.
- 6. Contact Mr. Elizondo for math questions.

Remember: You need at least 2 phone calls with Mr. Elizondo per semester.

What to do

6. Call (559) 549 - 3244 and leave a voicemail if call is not answered.

Make an appointment at: https://elizondo.youcanbook.me

Send a WebMail

U7L2 – California Common Core State Standards

HSG-C.A.2: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.

U7L2 – Objectives

- Use congruent chords, arc, and central angles
- Use perpendicular bisector to chords

U7L2 – Vocabulary

chord

U7L2 – Introduction

Chord: a segment whose endpoints are on a circle .

The diagram shows the chord \overline{PQ} and its related arc \widehat{PQ} .

U7L2 – Theorems, Part 1

Theorem 12-4 and its Converse

If $\angle AOB \cong \angle COD$, then $\widehat{AB} \cong \widehat{CD}$. If $\widehat{AB} \cong \widehat{CD}$, then $\angle AOB \cong \angle COD$.

Theorem 12-5 and its Converse

If $\angle AOB \cong \angle COD$, then $\overline{AB} \cong \overline{CD}$. If $\overline{AB} \cong \overline{CD}$, then $\angle AOB \cong \angle COD$.

U7L2 – Chords and Arcs

Theorem 12-4 and its Converse

If
$$\angle AOB \cong \angle COD$$
, then $\widehat{AB} \cong \widehat{CD}$.
If $\widehat{AB} \cong \widehat{CD}$, then $\angle AOB \cong \angle COD$.

Theorem 12-5 and its Converse

If
$$\angle AOB \cong \angle COD$$
, then $\overline{AB} \cong \overline{CD}$.
If $\overline{AB} \cong \overline{CD}$, then $\angle AOB \cong \angle COD$.

The circles are congruent. What can you conclude?

 $\widetilde{BC} \cong \widetilde{YZ}$, because within congruent circles, congruent chords have congruent arcs.

$$\overline{BC} \cong \overline{YZ}$$

U7L2 – Theorems, Part 2

Theorem 12-6 and Its Converse

If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} \cong \overline{CD}$. If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} \cong \overline{CD}$.

Theorem 12-7 and Its Converse

If OE = OF, then $\overline{AB} \cong \overline{CD}$. If $\overline{AB} \cong \overline{CD}$, then OE = OF.

U7L2 - Chords and Arcs

Theorem 12-6 and Its Converse

If $\overline{AB} \cong \overline{CD}$, then $\widehat{AB} \cong \widehat{CD}$. If $\widehat{AB} \cong \widehat{CD}$, then $\overline{AB} \cong \overline{CD}$.

Theorem 12-7 and Its Converse

If OE = OF, then $\overline{AB} \cong \overline{CD}$. If $\overline{AB} \cong \overline{CD}$, then OE = OF. What is the value of x? Justify your answer.

16, because the chords are equidistant from the center.

U7L2 - Theorems, Part 3

Theorems 12-8 to 12-10

If . . .

 \overline{AB} is a diameter and $\overline{AB} \perp \overline{CD}$

Then . . .

 $\overline{CE} \cong \overline{ED}$ and $\widehat{CA} \cong \widehat{AD}$

If . . .

 \overline{AB} is a diameter and $\overline{CE} \cong \overline{ED}$

Then . . .

 $\overline{AB} \perp \overline{CD}$

If . . .

 \overline{AB} is the perpendicular bisector of chord \overline{CD}

Then . . .

 \overline{AB} contains the center of $\odot O$

U7L2 - Theorems, Part 3

Find the value of x to the nearest tenth.

$$a^2 + b^2 = c^2$$

$$3.6^2 + 4^2 = x^2$$

$$12.96 + 16 = x^2$$

$$x^2 = 28.96$$

$$\sqrt{x^2} = \sqrt{28.96}$$

$$x = 5.38$$

$$x = 5.4$$

In circle O, \overline{AB} is the diameter of the circle and $\overline{AB} \perp \overline{CD}$. What conclusions can you make?

$$CE = ED, \widehat{BC} = \widehat{BD}$$

Questions?

- Check the Message Board first
- Send a WebMail
- You can also make an appointment at https://elizondo.youcanbook.me
- You can also call me at (559) 549-3244. If I'm not available to answer your call, please leave a voicemail with your full name and phone number.